If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+x^2=750
We move all terms to the left:
2x+x^2-(750)=0
a = 1; b = 2; c = -750;
Δ = b2-4ac
Δ = 22-4·1·(-750)
Δ = 3004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3004}=\sqrt{4*751}=\sqrt{4}*\sqrt{751}=2\sqrt{751}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{751}}{2*1}=\frac{-2-2\sqrt{751}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{751}}{2*1}=\frac{-2+2\sqrt{751}}{2} $
| Y=x^2-6x-112 | | 180x=2530 | | (4x-3)(2x+5)-11=20x-4(2x+1)(2-x)+6 | | G=f+2 | | 3(c+2)-14=16 | | 53+a=42 | | 0.3(9x+12)=15 | | 40x+15x=-7x | | 7x+19=9x+-3 | | 6y+8=10y+6y-5 | | 18=2(3+c) | | 2x+x+6=44 | | 176.45+c=313.56 | | (x+16=37.8) | | 4/k+7=-5 | | 7v-0.5(14-2v)=29 | | 3x^2+60x+200=0 | | 2x+4=2.8x | | x+x+x=1x1x1x1x1x1 | | Y-0.9x=0.5 | | 5^1-7x=4^x | | 11x-32=189 | | 0.70x=0.60x+50 | | 8.25x+65808=19.50x+22788 | | 0.19x=0.14x+21 | | 6x-6=1/2(8x-20) | | 46+(-2k)k=23 | | -w+8.5w=5.3 | | 3x+50+30=180 | | 5r=3r-10 | | 8=3.3x | | n-12+10=23 |